Abstract
Two copper(I) iodide tetramers, namely, [μ2-1,3-bis(diphenylphosphanyl)propane-κ2
P:P′]di-μ3-iodido-di-μ2-iodido-[1-(pyridin-3-yl)ethan-1-one-κN]tetracopper(I) dichloromethane disolvate, [Cu4I4(C6H7NO)2(C27H26P2)2]·2CH2Cl2 (Cu
L
3
), and [μ2-1,3-bis(diphenylphosphanyl)propane-κ2
P:P′]di-μ3-iodido-di-μ2-iodido-[1-(pyridin-4-yl)ethan-1-one-κN]tetracopper(I), [Cu4I4(C6H7NO)2(C27H26P2)2] (Cu
L
4
), have been synthesized from reactions of CuI, 1,3-bis(diphenylphosphanyl)propane (dppp) and 3- or 4-acetylpyridine (3/4-acepy). The complexes were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction (XRD), powder XRD and photoluminescence spectroscopy. Both complexes possess a stair-step [Cu4I4] cluster structure with a crystallographic inversion centre located in the middle of a Cu2I2 ring (Z′ = 1/2). The dppp ligands each adopt a bidentate coordination mode that bridges two CuI centres on one side of the [Cu4I4] cluster and the acepy ligands act as terminal ligands. The solid-state samples of similar complexes show highly efficiency thermally activated delayed fluorescence (TADF) at room temperature. At ambient temperature, both Cu
L
3
and Cu
L
4
exhibit photoluminescence, with a maximum emission in the region 560–580 nm and with short emissive decay times, but only phosphorescence was observed at 77 K. The narrow gaps between the higher lying singlet state and the triplet state, ΔE(S
1 − T
1), also confirm the presence of TADF. Structure analysis and consideration of photoluminescence indicates that the position of the acetyl group on the heterocyclic ligand has an obvious influence on the structural arrangement, on intermolecular interactions and on the observed photophysical properties.
Funder
Natural Science Foundation of Fujian Province
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献