Author:
Wachter Erin,Glazer Edith C.,Parkin Sean,Brock Carolyn Pratt
Abstract
The only crystals that could be grown from racemic solutions of the PF6−salt of the resolvable cation [Ru(2,9-dimethyl-1,10-phenanthroline)2(dipyrido[3,2-d:2′,3′-f]quinoxaline)]2+have translational symmetry only (space groupP1), contain nine independent sets of ions, and include numerous independent solvent molecules (11 acetone, one diethyl ether and possibly several water molecules). Layers of hydrophobic cations alternate with layers containing most of the anions and solvent molecules. All nine cations have the same basic conformation, which is distorted by the presence of the methyl substituents on the two 1,10-phenanthroline ligands. Four pairs of enantiomeric cations within a layer are related by approximate inversion centers; the ninth cation, which shows no sign of disorder, makes the layer chiral. Within the cation layers stripes parallel to [110] of six cations alternate with stripes of three; the local symmetry and the cation orientations are different in the two stripes. These stripes are reflected in the organization of the anion/solvent layer. Theca80:20 inversion twinning found indicates that enantiomeric preference is transmitted less perfectly across the anion/solvent layer than within the cation layer. The structure is exceptional in having nine independent formula units and an unbalanced set (ratio 4:5) of resolvable enantiomers. The difficulty in growing crystals of this material is consistent with its structural complexity.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献