Abstract
Active pharmaceutical ingredients (APIs), through their favourable donor/acceptor spatial distribution and synthon formation flexibility, are attractive building blocks in modern materials crystallography. The optical properties of a crystal strongly depend on two factors,i.e.the spatial distribution of molecules in the crystal structure and the electronic properties of molecular building blocks (dipole moments, polarizabilities, hyperpolarizabilities). Although the latter are easy to predict throughab initiocalculations, the former are not. Only a combination of experimental and theoretical charge density studies together with prediction and measurement of optical properties enable full analysis of the obtained functional material in terms of its usefulness in practical applications. This article presents design strategies of optical materials based on selected pharmaceutical molecules. Factors that contribute to molecular recognition in the four selected polar/chiral crystal phases (derived through charge density and Hirshfeld surfaces analysis) have been determined. Theoretically predicted optical properties of the molecular/ionic building blocks as well as bulk effects have been confirmed experimentally. This research is a first step in the design of novel optical materials based on push–pull molecules and APIs.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献