Abstract
Bond-length distributions have been examined for 33 configurations of the metalloid ions and 56 configurations of the post-transition metal ions bonded to oxygen, for 5279 coordination polyhedra and 21 761 bond distances for the metalloid ions, and 1821 coordination polyhedra and 10 723 bond distances for the post-transition metal ions. For the metalloid and post-transition elements with lone-pair electrons, the more common oxidation state between n
versus
n+2 is n for Sn, Te, Tl, Pb and Bi and n+2 for As and Sb. There is no correlation between bond-valence sum and coordination number for cations with stereoactive lone-pair electrons when including secondary bonds, and both intermediate states of lone-pair stereoactivity and inert lone pairs may occur for any coordination number > [4]. Variations in mean bond length are ∼0.06–0.09 Å for strongly bonded oxyanions of metalloid and post-transition metal ions, and ∼0.1–0.3 Å for ions showing lone-pair stereoactivity. Bond-length distortion is confirmed to be a leading cause of variation in mean bond lengths for ions with stereoactive lone-pair electrons. For strongly bonded cations (i.e. oxyanions), the causes of mean bond-length variation are unclear; the most plausible cause of mean bond-length variation for these ions is the effect of structure type, i.e. stress resulting from the inability of a structure to adopt its characteristic a priori bond lengths.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献