Abstract
A list has been compiled of 284 well determined organic structures having more than four crystallographically independent molecules or formula units (i.e. Z′ > 4). Another 22 structures were rejected because the space group or unit cell was probably misassigned; the rate for that type of error is then only 7%. The space-group frequencies are unusual; half the structures are in Sohncke groups, partly because the fraction of enantiopure structures of resolvable enantiomers is higher than for lowerZ′ structures. Careful investigation of the 284 structures has shown that they are very diverse; no simple classification can describe them all. Organizing principles have, however, been recognized for almost all of them. The most common features are simple modulations and hydrogen-bonded aggregates; only 14% of the structures have neither. In 50% of the structuresnmolecules are related by a pseudotranslation that would be a crystallographic translation but for small molecular displacements and rotations. In 70% of the structures there are aggregates (e.g. n-mers, columns or layers) held together by strong intermolecular interactions; those aggregates usually have approximate local symmetry. Because then-fold modulations and then-mers often haven<Z′, 85% of the structures withZ′ > 5 have several features that combine to give the highZ′ value. The number of different molecular conformations is usually small,i.e.one or two in 84% of the structures. More exotic packing features, such as ordered faults and alternating layers of different types, are found inca30% of the structures. A very few structures are so complex that it is difficult to understand how the crystals could have formed.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献