Data- and diversity-driven development of a Shotgun crystallization screen using the Protein Data Bank

Author:

Abrahams GabrielORCID,Newman JanetORCID

Abstract

Protein crystallization has for decades been a critical and restrictive step in macromolecular structure determination via X-ray diffraction. Crystallization typically involves a multi-stage exploration of the available chemical space, beginning with an initial sampling (screening) followed by iterative refinement (optimization). Effective screening is important for reducing the number of optimization rounds required, reducing the cost and time required to determine a structure. Here, an initial screen (Shotgun II) derived from analysis of the up-to-date Protein Data Bank (PDB) is proposed and compared with the previously derived (2014) Shotgun I screen. In an update to that analysis, it is clarified that the Shotgun approach entails finding the crystallization conditions that cover the most diverse space of proteins by sequence found in the PDB, which can be mapped to the well known maximum coverage problem in computer science. With this realization, it was possible to apply a more effective algorithm for selecting conditions. In-house data demonstrate that compared with alternatives, the Shotgun I screen has been remarkably successful over the seven years that it has been in use, indicating that Shotgun II is also likely to be a highly effective screen.

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In silico identification and biological evaluation of a selective MAP4K4 inhibitor against pancreatic cancer;Journal of Enzyme Inhibition and Medicinal Chemistry;2023-01-22

2. The FUSION protein crystallization screen;Journal of Applied Crystallography;2022-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3