Optimizing the refinement of merohedrally twinned P61 HIV-1 protease–inhibitor cocrystal structures

Author:

Lockbaum Gordon J.,Leidner Florian,Royer William E.,Kurt Yilmaz Nese,Schiffer Celia A.

Abstract

Twinning is a crystal-growth anomaly in which protein monomers exist in different orientations but are related in a specific way, causing diffraction reflections to overlap. Twinning imposes additional symmetry on the data, often leading to the assignment of a higher symmetry space group. Specifically, in merohedral twinning, reflections from each monomer overlap and require a twin law to model unique structural data from overlapping reflections. Neglecting twinning in the crystallographic analysis of quasi-rotationally symmetric homo-oligomeric protein structures can mask the degree of structural non-identity between monomers. In particular, any deviations from perfect symmetry will be lost if higher than appropriate symmetry is applied during crystallographic analysis. Such cases warrant choosing between the highest symmetry space group possible or determining whether the monomers have distinguishable structural asymmetries and thus require a lower symmetry space group and a twin law. Using hexagonal cocrystals of HIV-1 protease, a C 2-symmetric homodimer whose symmetry is broken by bound ligand, it is shown that both assigning a lower symmetry space group and applying a twin law during refinement are critical to achieving a structural model that more accurately fits the electron density. By re-analyzing three recently published HIV-1 protease structures, improvements in nearly every crystallographic metric are demonstrated. Most importantly, a procedure is demonstrated where the inhibitor can be reliably modeled in a single orientation. This protocol may be applicable to many other homo-oligomers in the PDB.

Funder

National Institute of General Medical Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3