Author:
Li Yanhua,Guo Zhen,Jin Li,Wang Deqiang,Gao Zengqiang,Su Xiaodong,Hou Haifeng,Dong Yuhui
Abstract
In cells, dUMP is the intermediate precursor of dTTP in its synthesis during deoxynucleotide metabolism. In Gram-positive bacteria and eukaryotes, zinc-dependent deoxycytidylate deaminases (dCDs) catalyze the conversion of dCMP to dUMP. The activity of dCD is allosterically activated by dCTP and inhibited by dTTP. Here, the crystal structure ofStreptococcus mutansdCD (SmdCD) complexed with dTTP is presented at 2.35 Å resolution, thereby solving the first pair of activator-bound and inhibitor-bound structures from the same species to provide a more definitive description of the allosteric mechanism. In contrast to the dTTP-bound dCD from the bacteriophage S-TIM5 (S-TIM5-dCD), dTTP-bound SmdCD adopts an inactive conformation similar to the apo form. A structural comparison suggests that the distinct orientations of the triphosphate group in S-TIM5-dCD and SmdCD are a result of the varying protein binding environment. In addition, calorimetric data establish that the modulators bound to dCD can be mutually competitively replaced. The results reveal the mechanism underlying its regulator-specific activity and might greatly enhance the understanding of the allosteric regulation of other dCDs.
Publisher
International Union of Crystallography (IUCr)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献