Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase

Author:

Cao Lili,Ryde Ulf

Abstract

X-ray crystallography is the main source of atomistic information on the structure of proteins. Normal crystal structures are obtained as a compromise between the X-ray scattering data and a set of empirical restraints that ensure chemically reasonable bond lengths and angles. However, such restraints are not always available or accurate for nonstandard parts of the structure, for example substrates, inhibitors and metal sites. The method of quantum refinement, in which these empirical restraints are replaced by quantum-mechanical (QM) calculations, has previously been suggested for small but interesting parts of the protein. Here, this approach is extended to allow for multiple conformations in the QM region by performing separate QM calculations for each conformation. This approach is shown to work properly and leads to improved structures in terms of electron-density maps and real-space difference density Z-scores. It is also shown that the quality of the structures can be gauged using QM strain energies. The approach, called ComQumX-2QM, is applied to the P-cluster in two different crystal structures of the enzyme nitrogenase, i.e. an Fe8S7Cys6 cluster, used for electron transfer. One structure is at a very high resolution (1.0 Å) and shows a mixture of two different oxidation states, the fully reduced PN state (Fe8 2+, 20%) and the doubly oxidized P2+ state (80%). In the original crystal structure the coordinates differed for only two iron ions, but here it is shown that the two states also show differences in other atoms of up to 0.7 Å. The second structure is at a more modest resolution, 2.1 Å, and was originally suggested to show only the one-electron oxidized state, P1+. Here, it is shown that it is rather a 50/50% mixture of the P1+ and P2+ states and that many of the Fe—Fe and Fe—S distances in the original structure were quite inaccurate (by up to 0.8 Å). This shows that the new ComQumX-2QM approach can be used to sort out what is actually seen in crystal structures with dual conformations and to give locally improved coordinates.

Funder

Vetenskapsrådet

eSSENCE: the e-science collaboration

Kungliga Fysiografiska Sällskapet i Lund

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3