Protein structure prediction by AlphaFold2: are attention and symmetries all you need?

Author:

Bouatta Nazim,Sorger Peter,AlQuraishi Mohammed

Abstract

The functions of most proteins result from their 3D structures, but determining their structures experimentally remains a challenge, despite steady advances in crystallography, NMR and single-particle cryoEM. Computationally predicting the structure of a protein from its primary sequence has long been a grand challenge in bioinformatics, intimately connected with understanding protein chemistry and dynamics. Recent advances in deep learning, combined with the availability of genomic data for inferring co-evolutionary patterns, provide a new approach to protein structure prediction that is complementary to longstanding physics-based approaches. The outstanding performance of AlphaFold2 in the recent Critical Assessment of protein Structure Prediction (CASP14) experiment demonstrates the remarkable power of deep learning in structure prediction. In this perspective, we focus on the key features of AlphaFold2, including its use of (i) attention mechanisms and Transformers to capture long-range dependencies, (ii) symmetry principles to facilitate reasoning over protein structures in three dimensions and (iii) end-to-end differentiability as a unifying framework for learning from protein data. The rules of protein folding are ultimately encoded in the physical principles that underpin it; to conclude, the implications of having a powerful computational model for structure prediction that does not explicitly rely on those principles are discussed.

Funder

Defense Advanced Research Projects Agency

National Cancer Institute

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3