Author:
Pongsapipatana Nawapan,Charoenwattanasatien Ratana,Pramanpol Nuttawan,Nguyen Thu-Ha,Haltrich Dietmar,Nitisinprasert Sunee,Keawsompong Suttipun
Abstract
β-Mannanase (EC 3.2.1.78) is an enzyme that cleaves within the backbone of mannan-based polysaccharides at β-1,4-linked D-mannose residues, resulting in the formation of mannooligosaccharides (MOS), which are potential prebiotics. The GH26 β-mannanase KMAN from Klebsiella oxytoca KUB-CW2-3 shares 49–72% amino-acid sequence similarity with β-mannanases from other sources. The crystal structure of KMAN at a resolution of 2.57 Å revealed an open cleft-shaped active site. The enzyme structure is based on a (β/α)8-barrel architecture, which is a typical characteristic of clan A glycoside hydrolase enzymes. The putative catalytic residues Glu183 and Glu282 are located on the loop connected to β-strand 4 and at the end of β-strand 7, respectively. KMAN digests linear MOS with a degree of polymerization (DP) of between 4 and 6, with high catalytic efficiency (k
cat/K
m) towards DP6 (2571.26 min−1 mM
−1). The predominant end products from the hydrolysis of locust bean gum, konjac glucomannan and linear MOS are mannobiose and mannotriose. It was observed that KMAN requires at least four binding sites for the binding of substrate molecules and hydrolysis. Molecular docking of mannotriose and galactosyl-mannotetraose to KMAN confirmed its mode of action, which prefers linear substrates to branched substrates.
Funder
Graduate School, Kasetsart University
Ministry of Education
Publisher
International Union of Crystallography (IUCr)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献