Abstract
The COP9 signalosome (CSN) is an essential multi-protein complex in eukaryotes. CSN is a master regulator of intracellular protein degradation, controlling the vast family of cullin–RING ubiquitin (E3) ligases (CRLs). Important in many cellular processes, CSN has prominent roles in DNA repair, cell-cycle control and differentiation. The recent crystal structure of human CSN provides insight into its exquisite regulation and functionality [Lingarajuet al.(2014),Nature (London),512, 161–165]. Structure determination was complicated by low-resolution diffraction from crystals affected by twinning and rotational pseudo-symmetry. Crystal instability and non-isomorphism strongly influenced by flash-cooling, radiation damage and difficulty in obtaining heavy-atom derivatives, were overcome. Many different subunits of the same fold class were distinguished at low resolution aided by combinatorial selenomethionine labelling. As an example of how challenging projects can be approached, the structure determination of CSN is described as it unfolded using cluster-compound MIRAS phasing, MR-SAD with electron-density models and cross-crystal averaging exploiting non-isomorphism among unit-cell variants of the same crystal form.
Publisher
International Union of Crystallography (IUCr)
Reference48 articles.
1. Methods used in the structure determination of bovine mitochondrial F1 ATPase
2. PHENIX: a comprehensive Python-based system for macromolecular structure solution
3. Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Sharff, A., Smart, O. S., Vonrhein, C. & Womack, T. O. (2011). AutoBUSTER. Cambridge: Global Phasing Ltd.
4. Generation, representation and flow of phase information in structure determination: recent developments in and aroundSHARP2.0
5. Low-Resolution Crystallography Is Coming of Age
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献