Abstract
The bond-valence model is a reliable way to validate assumed oxidation states based on structural data. It has successfully been employed for analyzing metal-binding sites in macromolecule structures. However, inconsistent results for heme-based structures suggest that some widely used bond-valenceR0parameters may need to be adjusted in certain cases. Given the large number of experimental crystal structures gathered since these initial parameters were determined and the similarity of binding sites in organic compounds and macromolecules, the Cambridge Structural Database (CSD) is a valuable resource for refining metal–organic bond-valence parameters.R0bond-valence parameters for iron(II), iron(III) and other metals have been optimized based on an automated processing of all CSD crystal structures. Almost allR0bond-valence parameters were reproduced, except for iron–nitrogen bonds, for which distinctR0parameters were defined for two observed subpopulations, corresponding to low-spin and high-spin states, of iron in both oxidation states. The significance of this data-driven method for parameter discovery, and how the spin state affects the interpretation of heme-containing proteins and iron-binding sites in macromolecular structures, are discussed.
Funder
National Institute of General Medical Sciences
National Institute of Allergy and Infectious Diseases
Medical Research Council
Publisher
International Union of Crystallography (IUCr)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献