Crystal structure of the novel amino-acid racemase isoleucine 2-epimerase fromLactobacillus buchneri

Author:

Hayashi Junji,Mutaguchi Yuta,Minemura Yume,Nakagawa Noriko,Yoneda Kazunari,Ohmori Taketo,Ohshima Toshihisa,Sakuraba Haruhiko

Abstract

Crystal structures ofLactobacillus buchneriisoleucine 2-epimerase, a novel branched-chain amino-acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5′-phosphate (PLP), in complex withN-(5′-phosphopyridoxyl)-L-isoleucine (PLP-L-Ile) and in complex withN-(5′-phosphopyridoxyl)-D-allo-isoleucine (PLP-D-allo-Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N-terminal, C-terminal and large PLP-binding domains. The active-site cavity in the apo structure was much more solvent-accessible than that in the PLP-bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent-inaccessible environment for the enzymatic reaction. The main-chain coordinates of theL. buchneriisoleucine 2-epimerase monomer showed a notable similarity to those of α-amino-∊-caprolactam racemase fromAchromobactor obaeand γ-aminobutyrate aminotransferase fromEscherichia coli. However, the amino-acid residues involved in substrate binding in those two enzymes are only partially conserved inL. buchneriisoleucine 2-epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction-intermediate analogues (PLP-L-Ile and PLP-D-allo-Ile) and site-directed mutagenesis suggest that L-isoleucine epimerization proceeds through abstraction of the α-hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α-hydrogen to the quinonoid intermediate to form D-allo-isoleucine.

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3