Substrate-induced dimerization of elaiophylin glycosyltransferase reveals a novel self-activating form of glycosyltransferase for symmetric glycosylation

Author:

Xu Tingting,Gan Qingqing,Liu Qiang,Chen Ruidong,Zhen Xuhui,Zhang ChangshengORCID,Liu JinsongORCID

Abstract

Elaiophylin (Ela), a unique 16-membered symmetric macrodiolide antibiotic, displays broad biological activity. Two rare 2-deoxy-L-fucose moieties at the ends of Ela are critical for its activity. Previously, elaiophylin glycosyltransferase (ElaGT) was identified as the enzyme that is responsible for the symmetric glycosylation of Ela, acting as a potential enzymatic tool for enhancing the diversity and activity of Ela. However, a symmetric catalytic mechanism has never been reported for a glycosyltransferase (GT). To explore the catalytic mechanism, the structure of ElaGT was determined in four forms: the apo form and Ela-bound, thymidine diphosphate-bound and uridine diphosphate-bound forms. In the Ela-bound structure, two ElaGTs form a `face-to-face' C2-symmetric homodimer with a continuous acceptor-binding pocket, allowing a molecule of Ela to shuffle through. Interestingly, this dimer interface resembles that of the activator-dependent GT EryCIII with its activator EryCII. Sequence analysis also indicates that ElaGT belongs to the activator-dependent GT family, but no putative activator has been identified in the Ela gene cluster. It was then found that the ElaGT homodimer may utilize this `face-to-face' arrangement to stabilize the Ela-binding loops on the interface and to simultaneously allosterically regulate the catalytic center. Therefore, these structures present a novel self-activating model for symmetric sugar transfer in the GT family and a new potential regulation site for substrate specificity.

Funder

State Key Laboratory of Respiratory Disease

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Guangdong Science and Technology Department

Guangdong Provincial Key Laboratory of Biocomputing

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3