Racemic crystal structures of A-DNA duplexes

Author:

Mandal Pradeep K.ORCID,Collie Gavin W.,Kauffmann BriceORCID,Huc IvanORCID

Abstract

The ease with which racemic mixtures crystallize compared with the equivalent chiral systems is routinely taken advantage of to produce crystals of small molecules. However, biological macromolecules such as DNA and proteins are naturally chiral, and thus the limited range of chiral space groups available hampers the crystallization of such molecules. Inspiring work over the past 15 years has shown that racemic mixtures of proteins, which were made possible by impressive advances in protein chemical synthesis, can indeed improve the success rate of protein crystallization experiments. More recently, the racemic crystallization approach was extended to include nucleic acids as a possible aid in the determination of enantiopure DNA crystal structures. Here, findings are reported that suggest that the benefits may extend beyond this. Two racemic crystal structures of the DNA sequence d(CCCGGG) are described which were found to fold into A-form DNA. This form differs from the Z-form DNA conformation adopted by the chiral equivalent in the solid state, suggesting that the use of racemates may also favour the emergence of new conformations. Importantly, the racemic mixture forms interactions in the solid state that differ from the chiral equivalent (including the formation of racemic pseudo-helices), suggesting that the use of racemic DNA mixtures could provide new possibilities for the design of precise self-assembled nanomaterials and nanostructures.

Funder

European Research Council

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3