Abstract
Adenylate-forming enzymes (AFEs) are a mechanistic superfamily of proteins that are involved in many cellular roles. In the biosynthesis of benzoxazole antibiotics, an AFE has been reported to play a key role in the condensation of cyclic molecules. In the biosynthetic gene cluster for the benzoxazole AJI9561, AjiA1 catalyzes the condensation of two 3-hydroxyanthranilic acid (3-HAA) molecules using ATP as a co-substrate. Here, the enzymatic activity of AjiA1 is reported together with a structural analysis of its apo form. The structure of AjiA1 was solved at 2.0 Å resolution and shows a conserved fold with other AFE family members. AjiA1 exhibits activity in the presence of 3-HAA (K
m = 77.86 ± 28.36, k
cat = 0.04 ± 0.004) and also with the alternative substrate 3-hydroxybenzoic acid (3-HBA; K
m = 22.12 ± 31.35, k
cat = 0.08 ± 0.005). The structure of AjiA1 in the apo form also reveals crucial conformational changes that occur during the catalytic cycle of this enzyme which have not been described for any other AFE member. Consequently, the results shown here provide insights into this protein family and a new subgroup is proposed for enzymes that are involved in benzoxazole-ring formation.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
International Union of Crystallography (IUCr)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献