Author:
Safonova T. N.,Mordkovich N. N.,Veiko V. P.,Okorokova N. A.,Manuvera V. A.,Dorovatovskii P. V.,Popov V. O.,Polyakov K. M.
Abstract
Uridine phosphorylase (UP; EC 2.4.2.3), a key enzyme in the pyrimidine-salvage pathway, catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. The structure of the C212S mutant of uridine phosphorylase from the facultatively aerobic Gram-negative γ-proteobacteriumShewanella oneidensisMR-1 (SoUP) was determined at 1.68 Å resolution. A comparison of the structures of the mutant and the wild-type enzyme showed that one dimer in the mutant hexamer differs from all other dimers in the mutant and wild-type SoUP (both in the free form and in complex with uridine). The key difference is the `maximum open' state of one of the subunits comprising this dimer, which has not been observed previously for uridine phosphorylases. Some conformational features of the SoUP dimer that provide access of the substrate into the active site are revealed. The binding of the substrate was shown to require the concerted action of two subunits of the dimer. The changes in the three-dimensional structure induced by the C212S mutation account for the lower affinity of the mutant for inorganic phosphate, while the affinity for uridine remains unchanged.
Publisher
International Union of Crystallography (IUCr)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献