`Making the molecular movie': first frames

Author:

Miller R. J. Dwayne,Ernstorfer Ralph,Harb Maher,Gao Meng,Hebeisen Christoph T.,Jean-Ruel Hubert,Lu Cheng,Moriena Gustavo,Sciaini German

Abstract

Recent advances in high-intensity electron and X-ray pulsed sources now make it possible to directly observe atomic motions as they occur in barrier-crossing processes. These rare events require the structural dynamics to be triggered by femtosecond excitation pulses that prepare the system above the barrier or access new potential energy surfaces that drive the structural changes. In general, the sampling process modifies the system such that the structural probes should ideally have sufficient intensity to fully resolve structures near the single-shot limit for a given time point. New developments in both source intensity and temporal characterization of the pulsed sampling mode have made it possible to make so-called `molecular movies',i.e.measure relative atomic motions faster than collisions can blur information on correlations. Strongly driven phase transitions from thermally propagated melting to optically modified potential energy surfaces leading to ballistic phase transitions and bond stiffening are given as examples of the new insights that can be gained from an atomic level perspective of structural dynamics. The most important impact will likely be made in the fields of chemistry and biology where the central unifying concept of the transition state will come under direct observation and enable a reduction of high-dimensional complex reaction surfaces to the key reactive modes, as long mastered by Mother Nature.

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3