Author:
Capelli Silvia C.,Bürgi Hans-Beat,Dittrich Birger,Grabowsky Simon,Jayatilaka Dylan
Abstract
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-madeab initioquantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustratedviathe example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–L-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Funder
Australian Research Council
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Reference99 articles.
1. Bond lengths in organic and metal-organic compounds revisited:X—H bond lengths from neutron diffraction data
2. Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography. Vol. C, ch. 9.5, pp. 790-811. Dordrecht: Kluwer Academic Publishers.
3. Static and dynamic Jahn-Teller distortions in CuN6 complexes. Crystal structures and EPR spectra of complexes between copper(II) and rigid, tridentate cis,cis-1,3,5-triaminocyclohexane (tach: Cu(tach)2(ClO4)2, Cu(tach)2(NO3)2. Crystal structure of Ni(tach)2(NO3)2
4. Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases
5. A multicenter numerical integration scheme for polyatomic molecules
Cited by
229 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献