Local and long-range atomic/magnetic structure of non-stoichiometric spinel iron oxide nanocrystallites

Author:

Andersen Henrik L.ORCID,Frandsen Benjamin A.ORCID,Gunnlaugsson Haraldur P.ORCID,Jørgensen Mads R. V.ORCID,Billinge Simon J. L.ORCID,Jensen Kirsten M. Ø.ORCID,Christensen MogensORCID

Abstract

Spinel iron oxide nanoparticles of different mean sizes in the range 10–25 nm have been prepared by surfactant-free up-scalable near- and super-critical hydrothermal synthesis pathways and characterized using a wide range of advanced structural characterization methods to provide a highly detailed structural description. The atomic structure is examined by combined Rietveld analysis of synchrotron powder X-ray diffraction (PXRD) data and time-of-flight neutron powder-diffraction (NPD) data. The local atomic ordering is further analysed by pair distribution function (PDF) analysis of both X-ray and neutron total-scattering data. It is observed that a non-stoichiometric structural model based on a tetragonal γ-Fe2O3 phase with vacancy ordering in the structure (space group P43212) yields the best fit to the PXRD and total-scattering data. Detailed peak-profile analysis reveals a shorter coherence length for the superstructure, which may be attributed to the vacancy-ordered domains being smaller than the size of the crystallites and/or the presence of anti-phase boundaries, faulting or other disorder effects. The intermediate stoichiometry between that of γ-Fe2O3 and Fe3O4 is confirmed by refinement of the Fe/O stoichiometry in the scattering data and quantitative analysis of Mössbauer spectra. The structural characterization is complemented by nano/micro-structural analysis using transmission electron microscopy (TEM), elemental mapping using scanning TEM, energy-dispersive X-ray spectroscopy and the measurement of macroscopic magnetic properties using vibrating sample magnetometry. Notably, no evidence is found of a Fe3O4/γ-Fe2O3 core-shell nanostructure being present, which had previously been suggested for non-stoichiometric spinel iron oxide nanoparticles. Finally, the study is concluded using the magnetic PDF (mPDF) method to model the neutron total-scattering data and determine the local magnetic ordering and magnetic domain sizes in the iron oxide nanoparticles. The mPDF data analysis reveals ferrimagnetic collinear ordering of the spins in the structure and the magnetic domain sizes to be ∼60–70% of the total nanoparticle sizes. The present study is the first in which mPDF analysis has been applied to magnetic nanoparticles, establishing a successful precedent for future studies of magnetic nanoparticles using this technique.

Funder

Danmarks Grundforskningsfond

Innovationsfonden

Danish Agency for Science and Higher Education

U.S. Department of Energy, Office of Science

Carlsbergfondet

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3