Improving the chances of successful protein structure determination with a random forest classifier

Author:

Jahandideh Samad,Jaroszewski Lukasz,Godzik Adam

Abstract

Obtaining diffraction quality crystals remains one of the major bottlenecks in structural biology. The ability to predict the chances of crystallization from the amino-acid sequence of the protein can, at least partly, address this problem by allowing a crystallographer to select homologs that are more likely to succeed and/or to modify the sequence of the target to avoid features that are detrimental to successful crystallization. In 2007, the now widely usedXtalPredalgorithm [Slabinskiet al.(2007),Protein Sci.16, 2472–2482] was developed.XtalPredclassifies proteins into five `crystallization classes' based on a simple statistical analysis of the physicochemical features of a protein. Here, towards the same goal, advanced machine-learning methods are applied and, in addition, the predictive potential of additional protein features such as predicted surface ruggedness, hydrophobicity, side-chain entropy of surface residues and amino-acid composition of the predicted protein surface are tested. The newXtalPred-RF(random forest) achieves significant improvement of the prediction of crystallization success over the originalXtalPred. To illustrate this,XtalPred-RFwas tested by revisiting target selection from 271 Pfam families targeted by the Joint Center for Structural Genomics (JCSG) in PSI-2, and it was estimated that the number of targets entered into the protein-production and crystallization pipeline could have been reduced by 30% without lowering the number of families for which the first structures were solved. The prediction improvement depends on the subset of targets used as a testing set and reaches 100% (i.e.twofold) for the top class of predicted targets.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

Reference48 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3