Abstract
A functional expression is introduced that relates scattered X-ray intensities from a still or a rotation snapshot to the corresponding structure-factor amplitudes. The new approach was implemented in the programnXDSfor processing monochromatic diffraction images recorded by a multi-segment detector where each exposure could come from a different crystal. For images containing indexable spots, the intensities of the expected reflections and their variances are obtained by profile fitting after mapping the contributing pixel contents to the Ewald sphere. The varying intensity decline owing to the angular distance of the reflection from the surface of the Ewald sphere is estimated using a Gaussian rocking curve. This decline is dubbed `Ewald offset correction', which is well defined even for still images. Together with an image-scaling factor and other corrections, an explicit expression is defined that predicts each recorded intensity from its corresponding structure-factor amplitude. All diffraction parameters, scaling and correction factors are improved by post-refinement. The ambiguous case of a lower point group than the lattice symmetry is resolved by a method reminiscent of the technique of `selective breeding'. It selects the indexing alternative for each image that yields, on average, the highest correlation with intensities from all other images. Processing a test set of rotation images byXDSand treating the same images bynXDSas snapshots of crystals in random orientations yields data of comparable quality, clearly indicating an anomalous signal from Se atoms.
Publisher
International Union of Crystallography (IUCr)
Subject
General Medicine,Structural Biology
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献