Structural insight into glucose dehydrogenase from the thermoacidophilic archaeonThermoplasma volcanium

Author:

Kanoh Yoshitaka,Uehara Seiichiroh,Iwata Hideyuki,Yoneda Kazunari,Ohshima Toshihisa,Sakuraba Haruhiko

Abstract

Glucose dehydrogenase from the thermoacidophilic archaeonThermoplasma volcanium(tvGlcDH) is highly active towards D-glucose and D-galactose, but does not utilize aldopentoses such as D-xylose as substrates. In the present study, the crystal structures of substrate/cofactor-free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D-glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme fromSulfolobus solfataricus(ssGlcDH-1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino-acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH-1. Structural comparison revealed that a decreased number of interactions between the C3-hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D-xylose.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3