Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity

Author:

Wang Chunxue,Lovelace Leslie L.,Sun Shengfang,Dawson John H.,Lebioda Lukasz

Abstract

Sperm whale myoglobin (Mb) functions as an oxygen-storage protein, but in the ferric state it possesses a weak peroxidase activity which enables it to carry out H2O2-dependent dehalogenation reactions. Hemoglobin/dehaloperoxidase fromAmphitrite ornata(DHP) is a dual-function protein represented by two isoproteins DHP A and DHP B; its peroxidase activity is at least ten times stronger than that of Mb and plays a physiological role. The `DHP A-like' K42Y Mb mutant (K42Y) and the `DHP B-like' K42N mutant (K42N) were engineered in sperm whale Mb to mimic the extended heme environments of DHP A and DHP B, respectively. The peroxidase reaction rates increased ∼3.5-fold and ∼5.5-fold in K42Y and K42NversusMb, respectively. The crystal structures of the K42Y and K42N mutants revealed that the substitutions at position 42 slightly elongate not only the distances between the distal His55 and the heme iron but also the hydrogen-bonding distances between His55 and the Fe-coordinated water. The enhanced peroxidase activity of K42Y and K42N thus might be attributed in part to the weaker binding of the axial water molecule that competes with hydrogen peroxide for the binding site at the heme in the ferric state. This is likely to be the mechanism by which the relationship `longer distal histidine to Fe distance – better peroxidase activity', which was previously proposed for heme proteins by Matsuiet al.(1999) (J. Biol. Chem.274, 2838–2844), works. Furthermore, positive cooperativity in K42N was observed when its dehaloperoxidase activity was measured as a function of the concentration of the substrate trichlorophenol. This serendipitously engineered cooperativity was rationalized by K42N dimerization through the formation of a dityrosine bond induced by excess H2O2.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3