Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns

Author:

Zhang Shouyang,Cao BinORCID,Su Tianhao,Wu Yue,Feng Zhenjie,Xiong JieORCID,Zhang Tong-Yi

Abstract

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.

Funder

Shanghai Pujiang Program

Guangzhou-HKUST(GZ) Joint Funding Program

Hong Kong University of Science and Technology

Publisher

International Union of Crystallography (IUCr)

Reference47 articles.

1. Spectrum line profiles: The Voigt function

2. Bacon, G. E. (1975). Neutron Diffraction, 3rd ed. Oxford: Clarendon Press.

3. Choice of collimators for a crystal spectrometer for neutron diffraction

4. Cao, B. (2024). Whole Pattern Fitting of Powder X-ray Diffraction by Expectation Maximum Algorithm. https://figshare.com/articles/software/Whole_Pattern_fitting_of_powder_X-ray_diffraction_by_Expectation_Maximum_algorithm/25060175.

5. Active learning accelerates the discovery of high strength and high ductility lead-free solder alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3