Author:
Vyse Simon,Desmond Howard,Huang Paul H.
Abstract
Receptor tyrosine kinases (RTKs) are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS)-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the deregulation of RTKs in disease, for instance receptor co-activation and kinome reprogramming, have largely been identified using phosphoproteomic-based strategies. This review outlines the current approaches employed in phosphoproteomic workflows, including phosphopeptide enrichment and MS data-acquisition methods. Here, recent advances in the application of MS-based phosphoproteomics to bridge critical gaps in our knowledge of RTK signalling are focused on. The current limitations of the technology are discussed and emerging areas such as computational modelling, high-throughput phosphoproteomic workflows and next-generation single-cell approaches to further our understanding in new areas of RTK biology are highlighted.
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献