On modelling disordered crystal structures through restraints from molecule-in-cluster computations, and distinguishing static and dynamic disorder

Author:

Dittrich BirgerORCID

Abstract

Distinguishing disorder into static and dynamic based on multi-temperature X-ray or neutron diffraction experiments is the current state of the art, but is only descriptive, not predictive. Here, several disordered structures are revisited from the Cambridge Crystallographic Data Center `drug subset', the Cambridge Structural Database and own earlier work, where experimental intensities of Bragg diffraction data were available. Using the molecule-in-cluster approach, structures with distinguishable conformations were optimized separately, as extracted from available or generated disorder models of the respective disordered crystal structures. Re-combining these `archetype structures' by restraining positional and constraining displacement parameters for conventional least-squares refinement, based on the optimized geometries, then often achieves a superior fit to the experimental diffraction data compared with relying on experimental information alone. It also simplifies and standardizes disorder refinement. Ten example structures were analysed. It is observed that energy differences between separate disorder conformations are usually within a small energy window of RT (T = crystallization temperature). Further computations classify disorder into static or dynamic, using single experiments performed at one single temperature, and this was achieved for propionamide.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3