Unusual shape-preserved pathway of a core-shell phase transition triggered by orientational disorder

Author:

Li Mengya,Tang WeiweiORCID,Gong JunboORCID

Abstract

The ubiquitous presence of crystal defects provides great potential and opportunities to construct the desired structure (hence with the desired properties) and tailor the synthetic process of crystalline materials. However, little is known about their regulation role in phase transition and crystallization pathways. It was generally thought that a phase transition in solution proceeds predominantly via the solvent-mediated phase-transformation pathway due to energetically high-cost solid-state phase transitions (if any). Herein, we report an unprecedented finding that an orientational disorder defect present in the crystal structure triggers an unusual pathway of a core-shell phase transition with apparent shape-preserved evolution. In the pathway, the solid-state dehydration phase transition occurs inside the crystal prior to its competitive transformation approach mediated by solvent, forming an unconventional core-shell structure. Through a series of combined experimental and computational techniques, we revealed that the presence of crystal defects, introduced by urate tautomerism over the course of crystallization, elevates the metastability of uric acid dihydrate (UAD) crystals and triggers UAD dehydration to the uric acid anhydrate (UAA) phase in the crystal core which precedes with surface dissolution of the shell UAD crystal and recrystallization of the core phase. This unique phase transition could also be related to defect density, which appears to be influenced by the thickness of UAD crystals and crystallization driving force. The discovery of an unusual pathway of the core-shell phase transition suggests that the solid-state phase transition is not necessarily slower than the solvent-mediated phase transformation in solution and provides an alternative approach to constructing the core-shell structure. Moreover, the fundamental role of orientational disorder defects on the phase transition identified in this study demonstrates the feasibility to tailor phase transition and crystallization pathways by strategically importing crystal defects, which has broad applications in crystal engineering.

Funder

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Major scientific and technological innovation project of Shandong Province

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3