Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ

Author:

Zee Chih-Te,Glynn CalinaORCID,Gallagher-Jones MarcusORCID,Miao JenniferORCID,Santiago Carlos G.ORCID,Cascio Duilio,Gonen TamirORCID,Sawaya Michael R.ORCID,Rodriguez Jose A.ORCID

Abstract

The ice-nucleation protein InaZ from Pseudomonas syringae contains a large number of degenerate repeats that span more than a quarter of its sequence and include the segment GSTSTA. Ab initio structures of this repeat segment, resolved to 1.1 Å by microfocus X-ray crystallography and to 0.9 Å by the cryo-EM method MicroED, were determined from both racemic and homochiral crystals. The benefits of racemic protein crystals for structure determination by MicroED were evaluated and it was confirmed that the phase restriction introduced by crystal centrosymmetry increases the number of successful trials during the ab initio phasing of the electron diffraction data. Both homochiral and racemic GSTSTA form amyloid-like protofibrils with labile, corrugated antiparallel β-sheets that mate face to back. The racemic GSTSTA protofibril represents a new class of amyloid assembly in which all-left-handed sheets mate with their all-right-handed counterparts. This determination of racemic amyloid assemblies by MicroED reveals complex amyloid architectures and illustrates the racemic advantage in macromolecular crystallography, now with submicrometre-sized crystals.

Funder

U.S. Department of Energy

Howard Hughes Medical Institute

National Institutes of Health, National Institute of General Medical Sciences

National Science Foundation, Office of Integrative Activities

Arnold and Mabel Beckman Foundation

Searle Scholars Program

Pew Charitable Trusts

QCB Collaboratory

National Institutes of Health, Division of Biomedical Research Workforce

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3