Regioisomers of singly bridged calix[6]crown-6 and their heavy alkali metal complexes: a molecular baseball glove for caesium(I)

Author:

Kim SeulgiORCID,Jung Jong HwaORCID,Lee Shim SungORCID,Park In-HyeokORCID

Abstract

We report the formation of heavy alkali metal complexes of bicyclic host molecules including the caesium(I) complex that catches the central metal ion with the deep pocket of the host similar to a baseball glove. For this, three regioisomers of singly bridged calix[6]crown-6 [1,2-bridged (H4 L 1,2), 1,3-bridged (H4 L 1,3) and 1,4-bridged (H4 L 1,4)] have been synthesized by alkylation of calix[6]arene with pentaethylene glycol ditosylate in the presence of M 2CO3 (M = Na, K, Rb and Cs). The larger the cation size of the metal carbonate, the higher the yield of the H4 L 1,4 isomer, indicating the size-based template effect. A combination of H4 L 1,2 and RbOH allowed isolation of the mononuclear rubidium(I) complex (1) in which the metal center is six-coordinated in a loose fashion, the remaining two oxygen donors in the crown loop and two phenols in the calix rim are uncoordinated. Notably, the complexation of H4 L 1,2 with CsOH yielded the mononuclear caesium(I) complex (2), in which all possible ten binding sites on the deep and good-fit pocket participate in coordination via high cooperativity between the crown loop and calix rim, similar to a baseball glove. In dipolar organic solution, the caesium(I) complex 2 remains intact. H4 L 1,4 afforded a dicesium(I) complex (3) and adjacent complexes are linked by intermolecular cation–π interactions, giving rise to a pseudo one-dimensional coordination polymer. These results provide insight into the metal carbonate-dependent synthesis of calix[6]crowns and the influence of regioisomers on caesium(I) complexation.

Funder

National Research Foundation of Korea

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3