Competitive cocrystallization and its application in the separation of flavonoids

Author:

Xia Yanming,Wei Yuanfeng,Chen Hui,Qian Shuai,Zhang Jianjun,Gao Yuan

Abstract

Recently, cocrystallization has been widely employed to tailor physicochemical properties of drugs in the pharmaceutical field. In this study, cocrystallization was applied to separate natural compounds with similar structures. Three flavonoids [baicalein (BAI), quercetin (QUE) and myricetin (MYR)] were used as model compounds. The coformer caffeine (CAF) could form cocrystals with all three flavonoids, namely BAI–CAF (cocrystal 1), QUE–CAF (cocrystal 2) and MYR–CAF (cocrystal 3). After adding CAF to methanol solution containing MYR and QUE (or QUE and BAI), cocrystal 3 (or cocrystal 2) preferentially formed rather than cocrystal 2 (or cocrystal 1), indicating that flavonoid separation could be achieved by competitive cocrystallization. After co-mixing the slurry of two flavonoids with CAF followed by centrifugation, the resolution ratio that could be achieved was 70–80% with purity >90%. Among the three cocrystals, cocrystal 3 showed the lowest formation constant with a negative Gibbs free energy of nucleation and the highest energy gap. Hirshfeld surface analysis and density of states analysis found that cocrystal 3 had the highest strong interaction contribution and the closest electronic density, respectively, followed by cocrystal 2 and cocrystal 1, suggesting CAF could competitively form a cocrystal with MYR much more easily than QUE and BAI. Cocrystallization is a promising approach for green and effective separation of natural products with similar chemical structures.

Funder

National Natural Science Foundation of China

Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

Priority Academic Program Development of Jiangsu Higher Education Institutions

"Double First-Class" University Project

Jiangsu Province Double Innovation Talent Program

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3