The effect of polymorphism on polymer properties: crystal structure, stability and polymerization of the short-chain bio-based nylon 52 monomer 1,5-pentanediamine oxalate

Author:

Li ZihanORCID,Li Shushu,Yang Pengpeng,Fang Xincao,Wen Qingshi,Li Ming,Zhuang WeiORCID,Wu Jinglan,Ying HanjieORCID

Abstract

The compound 1,5-pentanediamine (PDA) is prepared by biological methods using biomass as raw material. The salt of 1,5-pentanediamine oxalate (PDA-OXA) was used directly as the monomer for the preparation of a new bio-based nylon 52 material. High-performance polymer materials require initial high-quality monomers, and crystallization is an essential approach to preparing such a monomer. In this work, three crystal forms of PDA-OXA, the anhydrate, dihydrate and trihydrate, were found and the single crystals of two hydrates were obtained. Their crystal structures were determined using single-crystal and powder X-ray diffraction. The thermal behaviors were characterized by thermodynamic analysis, and the lattice energy was calculated to further explore the relationship between the thermal stability and crystal structure. Detailed computational calculations, Hirshfeld analyses and lattice energy calculations were performed to quantify both the contribution of intra- and intermolecular interactions to the supramolecular assembly, as well as the influence on the stability of the structure. The structure–property relationship between the PDA-OXA crystal forms was established. Moreover, the phase transformation mechanism between the crystalline forms of PDA-OXA has been established, and the control strategy of specific crystal forms was developed from the water activity–temperature phase diagram and relevant thermodynamic data. Finally, the influence of the polymorphism of the monomer and the polymerization methods on the properties of the polymer was investigated. The nylon 52 product obtained showed good appearance, high hardness and thermal stability, the polymer made using the anhydrate as the monomer has better thermodynamic properties than that prepared from the dihydrate, indicating practical industrial application prospects.

Funder

National Natural Science Foundation of China

Key R & D plan of Jiangsu Province

Jiangsu Province Natural Science Foundation for Distinguished Young Scholars

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3