Abstract
Under almost all circumstances, electron diffraction patterns contain information about the phases of structure factors, a consequence of the short wavelength of an electron and its strong Coulombic interaction with matter. However, extracting this information remains a challenge and no generic method exists. In this work, a set of simple analytical expressions is derived for the intensity distribution in convergent-beam electron diffraction (CBED) patterns recorded under three-beam conditions. It is shown that these expressions can be used to identify features in three-beam CBED patterns from which three-phase invariants can be extracted directly, without any iterative refinement processes. The octant, in which the three-phase invariant lies, can be determined simply by inspection of the indexed CBED patterns (i.e. the uncertainty of the phase measurement is ±22.5°). This approach is demonstrated with the experimental measurement of three-phase invariants in two simple test cases: centrosymmetric Si and non-centrosymmetric GaAs. This method may complement existing structure determination methods by providing direct measurements of three-phase invariants to replace `guessed' invariants in ab initio phasing methods and hence provide more stringent constraints to the structure solution.
Funder
Australian Research Council
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献