Room-temperature photo-induced martensitic transformation in a protein crystal

Author:

Dajnowicz Steven,Langan Patricia S.,Weiss Kevin L.,Ivanov Ilia N.,Kovalevsky Andrey

Abstract

Martensitic transformations are the first-order crystal-to-crystal phase transitions that occur mostly in materials such as steel, alloys and ceramics, thus having many technological applications. These phase transitions are rarely observed in molecular crystals and have not been detected in protein crystals. Reversibly switchable fluorescent proteins are widely used in biotechnology, including super-resolution molecular imaging, and hold promise as candidate biomaterials for future high-tech applications. Here, we report on a reversibly switchable fluorescent protein, Tetdron, whose crystals undergo a photo-induced martensitic transformation at room temperature. Room-temperature X-ray crystallography demonstrates that at equilibrium Tetdron chromophores are all in the trans configuration, with an ∼1:1 mixture of their protonated and deprotonated forms. Irradiation of a Tetdron crystal with 400 nm light induces a martensitic transformation, which results in Tetdron tetramerization at room temperature revealed by X-ray photocrystallography. Crystal and solution spectroscopic measurements provide evidence that the photo-induced martensitic phase transition is coupled with the chromophore deprotonation, but no trans–cis isomerization is detected in the structure of an irradiated crystal. It is hypothesized that protein dynamics assists in the light-induced proton transfer from the chromophore to the bulk solvent and in the ensuing martensitic phase transition. The unique properties of Tetdron may be useful in developing novel biomaterials for optogenetics, data storage and nanotechnology.

Funder

Argonne National Laboratory

Basic Energy Sciences

U.S. Department of Energy, Office of Science

Biological and Environmental Research

U.S. Department of Energy

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3