Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion interleaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.
Funder
National Institutes of Health
Brookhaven National Laboratory
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献