Template design based on molecular and crystal structure similarity to regulate conformational polymorphism nucleation: the case of α,ω-alkanedicarboxylic acids

Author:

Lin Jiawei,Shi PengORCID,Wang Ying,Wang Lingyu,Ma Yiming,Liu Fei,Wu SongguORCID,Gong JunboORCID

Abstract

Template design on polymorph control, especially conformational polymorphs, is still in its infancy and the result of polymorph control is often accidental. A method of regulating the crystallization of conformational polymorphs based on the crystal structure similarity of templates and the target crystal form has been developed. Crystal structure similarity was considered to be able to introduce lattice matching (geometric term) with chemical interactions to regulate conformational polymorph nucleation. The method was successfully applied to induce the crystallization of DA7-II [HOOC–(CH2) n −2–COOH (diacids), named DAn, where n = 7, 9, 15, 17 and II represents the metastable polymorph] on the surface of DA15-II. An analogous two-dimensional plane – the (002) face of both DA15-II and DA7-II – was firstly predicted as the epitaxially attached face with similar lattice parameters and the strongest adsorption energy. The powder DA15-II template with the preferred orientation face in (002) presented much stronger inducing DA7-II ability than the template with other preferred orientation faces. The epitaxial growth of DA7-II on DA15-II through an identical (002) face was clearly observed and verified by the single-crystal inducing experiments. The molecular dynamics simulation results demonstrated that the strong interactions occurred between DA7 molecules and the (002) face of DA15-II. This method has been verified and further applied to the crystallization of DA7-II on the surface of DA17-II and DA9-II on the surface of DA15-II. This study developed a strategy based on structure similarity to regulate the conformational polymorph and verified the significant role of lattice matching and chemical effects on the design and preparation of templates.

Funder

National Science Foundation of China

Innovative Group Project

Chemistry and Chemical Engineering Guangdong Laboratory

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3