Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1

Author:

Lee Ho-Hsien,Cherni Irene,Yu HongQi,Fromme Raimund,Doran Jeffrey D.,Grotjohann Ingo,Mittman Michele,Basu Shibom,Deb Arpan,Dörner Katerina,Aquila Andrew,Barty Anton,Boutet Sébastien,Chapman Henry N.,Doak R. Bruce,Hunter Mark S.,James Daniel,Kirian Richard A.,Kupitz Christopher,Lawrence Robert M.,Liu Haiguang,Nass Karol,Schlichting Ilme,Schmidt Kevin E.,Seibert M. Marvin,Shoeman Robert L.,Spence John C. H.,Stellato Francesco,Weierstall Uwe,Williams Garth J.,Yoon Chunhong,Wang Dingjie,Zatsepin Nadia A.,Hogue Brenda G.,Matoba Nobuyuki,Fromme Petra,Mor Tsafrir S.

Abstract

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein ofHuman immunodeficiency virus 1(HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed inEscherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.

Funder

National Institutes of Health

National Science Foundation

U.S. Department of Energy

Max-Planck-Gesellschaft

Helmholtz Association

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3