Author:
Borek Dominika,Cymborowski Marcin,Machius Mischa,Minor Wladek,Otwinowski Zbyszek
Abstract
In macromolecular crystallography, the acquisition of a complete set of diffraction intensities typically involves a high cumulative dose of X-ray radiation. In the process of data acquisition, the irradiated crystal lattice undergoes a broad range of chemical and physical changes. These result in the gradual decay of diffraction intensities, accompanied by changes in the macroscopic organization of crystal lattice order and by localized changes in electron density that, owing to complex radiation chemistry, are specific for a particular macromolecule. The decay of diffraction intensities is a well defined physical process that is fully correctable during scaling and merging analysis and therefore, while limiting the amount of diffraction, it has no other impact on phasing procedures. Specific chemical changes, which are variable even between different crystal forms of the same macromolecule, are more difficult to predict, describe and correct in data. Appearing during the process of data collection, they result in gradual changes in structure factors and therefore have profound consequences in phasing procedures. Examples of various combinations of radiation-induced changes are presented and various considerations pertinent to the determination of the best strategies for handling diffraction data analysis in representative situations are discussed.
Publisher
International Union of Crystallography (IUCr)
Subject
General Medicine,Structural Biology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献