Structures of the ribosome-inactivating protein from barley seeds reveal a unique activation mechanism

Author:

Lee Byung-Gil,Kim Min Kyung,Kim Byeong-Won,Suh Se Won,Song Hyun Kyu

Abstract

Ribosome-inactivating protein (RIP), a defence protein found in various plants, possesses different chain architectures and activation mechanisms. The RIP from barley (bRIP) is a type I RIP and has sequence features that are divergent from those of type I and type II RIPs from dicotyledonous plants and even the type III RIP from maize. This study presents the first crystal structure of an RIP from a cereal crop, barley, in free, AMP-bound and adenine-bound states. For phasing, a codon-optimized syntheticbrip1gene was used and a vector was constructed to overexpress soluble bRIP fusion proteins; such expression has been verified in a number of cases. The overall structure of bRIP shows folding similar to that observed in other RIPs but also shows significant differences in specific regions, particularly in a switch region that undergoes a structural transition between a 310-helix and a loop depending on the liganded state. The switch region is in a position equivalent to that of a proteolytically susceptible and putative ribosome-binding site in type III RIPs. Thus, the bRIP structure confirms the detailed enzymatic mechanism of this N-glycosidase and reveals a novel activation mechanism for type I RIPs from cereal crops.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3