Author:
Ashkar Rana,Stonaha P.,Washington A. L.,Shah V. R.,Fitzsimmons M. R.,Maranville B.,Majkrzak C. F.,Lee W. T.,Schaich W. L.,Pynn Roger
Abstract
Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous wave source. In both cases, the spin-echo polarization, studied as a function of the spin-echo length, peaks at integer multiples of the grating period but there are some differences between the two sets of data. The dynamical theory explains the differences and gives a good account of both sets of results.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献