Preparation and microstructure characterization of ball-milled ZrO2powder by the Rietveld method: monoclinic to cubic phase transformation without any additive

Author:

Bid S.,Pradhan S. K.

Abstract

The phase transformation kinetics of high-energy ball-milled monoclinic ZrO2have been studied in detail by Rietveld powder structure refinement analysis. In the present study, no stabilizing compound was required to obtain the cubic phase. The fine-grain powder was milled in a planetary ball mill for up to several hours at different BPMRs (ball to powder mass ratios): 10:1, 20:1, 35:1 and 40:1. During the process of ball milling, the monoclinic phase is gradually transformed to the cubic phase. The relative phase abundances of the respective phases, the particle sizes, the r.m.s. strains, the lattice parameter changes,etc., have been estimated from Rietveld analysis of X-ray powder diffraction data. It has been found that a higher BPMR exerts more influence on rapid phase transformation. In them- toc-ZrO2phase transformation, no formation of an intermediate tetragonal ZrO2phase has been found. The small change in the lattice volume ofm-ZrO2, which is very close to the lattice volume ofc-ZrO2, caused by ball milling may be attributed to this phase change. The formation of thecphase is noticed, in general, after just 1 h of ball milling, and the particle size of themphase is reduced to a large extent at the first stage of milling and remains almost unchanged with increasing milling time. However, the particle size of thecphase increases with increasing milling time for the samples milled with higher BPMRs (35:1 and 40:1), suggesting that quenching caused by a high impact energy followed by an annealing effect may play a vital role, which is further manifested in the agglomeration of small particles.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3