Three-dimensional plastic response in polycrystalline coppervianear-field high-energy X-ray diffraction microscopy

Author:

Li S. F.,Lind J.,Hefferan C. M.,Pokharel R.,Lienert U.,Rollett A. D.,Suter R. M.

Abstract

The evolution of the crystallographic orientation field in a polycrystalline sample of copper is mapped in three dimensions as tensile strain is applied. Using forward-modeling analysis of high-energy X-ray diffraction microscopy data collected at the Advanced Photon Source, the ability to track intragranular orientation variations is demonstrated on an ∼2 µm length scale with ∼0.1° orientation precision. Lattice rotations within grains are tracked between states with ∼1° precision. Detailed analysis is presented for a sample cross section before and after ∼6% strain. The voxel-based (0.625 µm triangular mesh) reconstructed structure is used to calculate kernel-averaged misorientation maps, which exhibit complex patterns. Simulated scattering from the reconstructed orientation field is shown to reproduce complex scattering patterns generated by the defected microstructure. Spatial variation of a goodness-of-fit or confidence metric associated with the optimized orientation field indicates regions of relatively high or low orientational disorder. An alignment procedure is used to match sample cross sections in the different strain states. The data and analysis methods point toward the ability to perform detailed comparisons between polycrystal plasticity computational model predictions and experimental observations of macroscopic volumes of material.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3