Experimental and theoretical study of the diffraction properties of various crystals for the realization of a soft gamma-ray Laue lens

Author:

Barrière Nicolas,Rousselle Julien,von Ballmoos Peter,Abrosimov Nikolai V.,Courtois Pierre,Bastie Pierre,Camus Thierry,Jentschel Michael,Kurlov Vladimir N.,Natalucci Lorenzo,Roudil Gilles,Frisch Brejnholt Nicolai,Serre Denis

Abstract

Crystals are the elementary constituents of Laue lenses, an emerging technology which could allow the realization of a space-borne telescope 10–100 times more sensitive than existing ones, in the 100 keV–1.5 MeV energy range. This paper addresses the development of efficient crystals for the realization of a Laue lens. In the theoretical part, 35 candidate crystals, both pure and two-component crystals, are considered. Their peak reflectivity at 100, 500 keV and 1 MeV is calculated assuming they are mosaic crystals. It is found that, by careful selection of crystals, it is possible to achieve a reflectivity above 30% over the whole energy range, and even up to 40% in the lower part of the energy range. In the experimental part, three different materials (Si1−xGexwith a gradient of composition, mosaic Cu and Au) have been measured at both ESRF and ILL using highly monochromatic beams ranging from 300 to 816 keV. The aim was to check their homogeneity, quality and angular spread (mosaicity). These crystals have shown outstanding performance, such as reflectivity up to 31% at ∼600 keV (Au) or 60% at 300 keV (SiGe) and angular spread as low as 15 arcsec for Cu, fulfilling very well the requirements for a Laue lens application. An unexpected finding is that there are important discrepancies with Darwin's model when a crystal is measured using various energies.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3