Abstract
Small modifications to the conjugate gradient method for solving symmetric positive definite systems have resulted in an increase in performance over LU decomposition by a factor of around 84 for solving a dense system of 1325 unknowns. Performance is further increased in the case of applying upper- and lower-bound parameter constraints. For structure solution employing simulated annealing and the Newton–Raphson method of non-linear least squares, the overall performance gain can be a factor of four, depending on the applied constraints. In addition, the new algorithm with bounding constraints often seeks out lower minima than would otherwise be attainable without constraints. The behaviour of the new algorithm has been tested against the crystallographic problems of Pawley refinement, rigid-body and general crystal structure refinement.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献