Molecular envelopes derived from protein powder diffraction data

Author:

Wright Jonathan P.,Besnard Céline,Margiolaki Irene,Basso Sebastian,Camus Fabrice,Fitch Andrew N.,Fox Gavin C.,Pattison Philip,Schiltz Marc

Abstract

The preparation of single crystals suitable for X-ray analysis is frequently the most difficult step in structural studies of proteins. With the aid of two examples, it is shown thatde novosolution of the crystallographic phase problem can be achieved at low resolution using microcrystalline powder samplesviathe single isomorphous replacement method. With synchrotron radiation and optimized instrumentation, high-quality powder patterns have been recorded, from which it was possible to generate phase information for structure factors up to 6 Å resolution. pH- and radiation-induced anisotropic lattice changes were exploited to reduce the problem of overlapping reflections, which is a major challenge in protein powder diffraction. The resulting data were of sufficient quality to compute molecular envelopes of the protein molecule and to map out the solvent channels in the crystals. The results show that protein powder diffraction can yield low-resolution data that are potentially useful for the characterization of microcrystalline proteins as novel micro- and mesoporous materials as well as for structural studies of biologically important macromolecules.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3