Author:
Hrkac Viktor,Kienle Lorenz,Kaps Sören,Lotnyk Andriy,Mishra Yogendra Kumar,Schürmann Ulrich,Duppel Viola,Lotsch Bettina Valeska,Adelung Rainer
Abstract
The morphology and real structure of wurtzite-type ZnO nanospikes grown by the recently introduced flame transport synthesis have been examined by means of advanced transmission electron microscopy (TEM). The rapid synthesis produces nanospikes showing a well defined texture which restricts TEM experiments to a preferred viewing direction of [2 {\overline 1}{\overline 1}3]. Forced by the specific morphology, all of the observed nanospikes show a complicated superposition of twinned domains as an intrinsic real structural feature. The high-resolution contrasts are characterized by lamellar fringes parallel to the (1 {\overline 1} 0 {\overline 1}) planes, and the quasi-kinematic diffraction patterns contain satellite peaks based on multiple scattering. All these phenomena can be interpreted by comparison of experimental and simulated data relying on a supercell approach.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献