Time-Resolved Small-Angle X-ray Scattering Combined with Wide-Angle X-ray Scattering

Author:

Bras W.,Ryan A. J.

Abstract

The high X-ray intensity of synchrotron radiation (SR) beamlines makes it possible to perform time-resolved small-angle X-ray scattering (SAXS) experiments. The information that can be obtained by collecting the wide-angle diffraction pattern simultaneously not only increases the information content of an experiment but also increases the reliability of the time-correlations between SAXS and WAXS (wide-angle X-ray scattering) patterns. This is a great advantage for experiments with a time resolution below the level of 1 s per frame. With appropriate instrumentation, this is a time domain that is routinely accessible for a large group of research fields. This has had a considerable impact upon the understanding of fundamental aspects of phase transformations. Not only fundamental processes but also more applied fields have benefited from these developments. In polymer research this has led to a situation in which it has become possible to simulate materials processing techniques on-line. With the advent of third-generation synchrotron-radiation sources (e.g. ESRF, APS, Spring8), it has become possible to develop SAXS/WAXS beamlines that will open up new research opportunities by utilizing the higher intensity, the tuneability and the higher collimation offered by these SR sources. However, some of the instrumentation limits in detector and sample environments that have become apparent in research on second-generation synchrotron-radiation sources still have not been appropriately addressed, which means that in some fields it will not be possible to take full advantage of the superior X-ray beam quality that third-generation synchrotrons can offer. A way in which these instrumentation limits can be overcome is discussed, and the instrumentation for a new bending-magnet beamline at the ESRF is used as an example.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3