Extraction of domain structure information from small-angle scattering patterns of bulk materials

Author:

Stribeck Norbert

Abstract

A method is presented that permits the extraction and visualization of topological domain structure information contained in small-angle scattering (SAS) patterns without complex pretreatment. Multi-dimensional noisy raw data can be processed. Such data are, for instance, accumulated in the field of materials research from short-exposure-timein situsmall-angle X-ray scattering (SAXS) experiments with synchrotron radiation. The result is a multi-dimensional intersect or chord distribution, which is defined as the Laplacian of the correlation function. Moreover, it is equivalent to the autocorrelation of the gradient of the electron density. The procedure is, in particular, adapted to the analysis of the nanoscale structure of samples with fibre symmetry, such as polymer fibres or strained elastomers. Multi-dimensional relations among morphological components become apparent in real space and help to elucidate the nature of the processes governing formation and change of structure on the nanometre scale. Utilizing digital signal processing tools, the algorithm is based on spatial frequency filtering of the raw data. The background to be subtracted from the small-angle scattering pattern is formed from its own low spatial frequencies. Noise may be removed by suppressing high spatial frequencies. In the frequency band between these low and high spatial frequencies, the domain structure information of the studied nanocomposite appears.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3