Author:
Poulsen H. F.,Nielsen S. F.,Lauridsen E. M.,Schmidt S.,Suter R. M.,Lienert U.,Margulies L.,Lorentzen T.,Juul Jensen D.
Abstract
A fast and non-destructive method for generating three-dimensional maps of the grain boundaries in undeformed polycrystals is presented. The method relies on tracking of micro-focused high-energy X-rays. It is verified by comparing an electron microscopy map of the orientations on the 2.5 × 2.5 mm surface of an aluminium polycrystal with tracking data produced at the 3DXRD microscope at the European Synchrotron Radiation Facility. The average difference in grain boundary position between the two techniques is 26 µm, comparable with the spatial resolution of the 3DXRD microscope. As another extension of the tracking concept, algorithms for determining the stress state of the individual grains are derived. As a case study, 3DXRD results are presented for the tensile deformation of a copper specimen. The strain tensor for one embedded grain is determined as a function of load. The accuracy on the strain is Δ∊ ≃ 10−4.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
326 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献